Nanoparticle separation with a miniaturized asymmetrical flow field-flow fractionation cartridge
نویسندگان
چکیده
Asymmetrical Flow Field-Flow Fractionation (AF4) is a separation technique applicable to particles over a wide size range. Despite the many advantages of AF4, its adoption in routine particle analysis is somewhat limited by the large footprint of currently available separation cartridges, extended analysis times and significant solvent consumption. To address these issues, we describe the fabrication and characterization of miniaturized AF4 cartridges. Key features of the down-scaled platform include simplified cartridge and reagent handling, reduced analysis costs and higher throughput capacities. The separation performance of the miniaturized cartridge is assessed using certified gold and silver nanoparticle standards. Analysis of gold nanoparticle populations indicates shorter analysis times and increased sensitivity compared to conventional AF4 separation schemes. Moreover, nanoparticulate titanium dioxide populations exhibiting broad size distributions are analyzed in a rapid and efficient manner. Finally, the repeatability and reproducibility of the miniaturized platform are investigated with respect to analysis time and separation efficiency.
منابع مشابه
Comparison of Miniaturized and Conventional Asymmetrical Flow Field-Flow Fractionation (AF4) Channels for Nanoparticle Separations
The performance of a miniaturized channel for the separation of polymer and metal nanoparticles (NP) using Asymmetrical Flow Field-Flow Fractionation (AF4) was investigated and compared with a conventional AF4 system. To develop standard separation methods, experimental parameters like cross flow, gradient profile and injection time were varied and optimized. Corresponding chromatographic param...
متن کاملMechanistic investigation of nanoparticle motion in pulsed voltage miniaturized electrical field flow fractionation device by in situ fluorescence imaging.
In our previous study, we reported a miniaturized electrical field flow fractionation device (micro-EFFF) that used a pulsed voltage (PV) to increase the effective electric field and, hence, improved the separation performance. In this work, we developed two micro-EFFFs with planar or segmented electrode design and investigated the particle movement in the flow channels under a PV. Numerical si...
متن کاملMiniaturized flow fractionation device assisted by a pulsed electric field for nanoparticle separation.
Electric field flow fractionation (EFFF) is a powerful separation technique based on an electrical field perpendicular to a pressure-driven flow. Previous studies of microelectric field flow fractionation (micro-EFFF) indicate that separation performance was limited due to a weak effective electric field caused by polarization layers on the electrode surfaces. In this work, we report on a micro...
متن کاملMiniaturization of frit inlet asymmetrical flow field-flow fractionation.
A miniaturized frit inlet asymmetrical flow field-flow fractionation (mFI-AFlFFF) channel has been constructed and tested for the separation of proteins. By scaling down the geometrical channel dimension of a conventional FI-AFlFFF system, flow rate ranges that can be manipulated were decreased to 20-30 microL/min, which reduces the injection amount of sample materials. The end effect contribut...
متن کاملOnline Miniaturized Asymmetrical Flow Field-Flow Fractionation and Inductively Coupled Plasma Mass Spectrometry for Metalloprotein Analysis of Plasma from Patients with Lung Cancer.
Metalloproteins (metal-binding proteins) refer to proteins containing metal ion cofactors. The importance of these proteins has increased owing to their involvement in many biological processes. Here, we introduce an analytical platform based on online coupling of miniaturized asymmetrical flow field-flow fractionation (mAF4) and inductively coupled plasma mass spectrometry (ICPMS) for size sep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2015